skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Schnitzler, Jörg‐Peter"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Infection of Arabidopsis with avirulentPseudomonas syringaeand exposure to nitrogen dioxide (NO2) both trigger hypersensitive cell death (HCD) that is characterized by the emission of bright blue‐green (BG) autofluorescence under UV illumination. The aim of our current work was to identify the BG fluorescent molecules and scrutinize their biosynthesis, localization, and functions during the HCD. Compared with wild‐type (WT) plants, the phenylpropanoid‐deficient mutantfah1developed normal HCD except for the absence of BG fluorescence. Ultrahigh resolution metabolomics combined with mass difference network analysis revealed that WT but notfah1plants rapidly accumulate dehydrodimers of sinapic acid, sinapoylmalate, 5‐hydroxyferulic acid, and 5‐hydroxyferuloylmalate during the HCD. FAH1‐dependent BG fluorescence appeared exclusively within dying cells of the upper epidermis as detected by microscopy. Saponification released dehydrodimers from cell wall polymers of WT but notfah1plants. Collectively, our data suggest that HCD induction leads to the formation of free BG fluorescent dehydrodimers from monomeric sinapates and 5‐hydroxyferulates. The formed dehydrodimers move from upper epidermis cells into the apoplast where they esterify cell wall polymers. Possible functions of phenylpropanoid dehydrodimers are discussed. 
    more » « less
  2. null (Ed.)
    Plant isoprene emissions are known to contribute to abiotic stress tolerance, especially during episodes of high temperature and drought, and during cellular oxidative stress. Recent studies have shown that genetic transformations to add or remove isoprene emissions cause a cascade of cellular modifications that include known signaling pathways, and interact to remodel adaptive growth-defense tradeoffs. The most compelling evidence for isoprene signaling is found in the shikimate and phenylpropanoid pathways, which produce salicylic acid, alkaloids, tannins, anthocyanins, flavonols and other flavonoids; all of which have roles in stress tolerance and plant defense. Isoprene also influences key gene expression patterns in the terpenoid biosynthetic pathways, and the jasmonic acid, gibberellic acid and cytokinin signaling networks that have important roles in controlling inducible defense responses and influencing plant growth and development, particularly following defoliation. In this synthesis paper, using past studies of transgenic poplar, tobacco and Arabidopsis, we present the evidence for isoprene acting as a metabolite that coordinates aspects of cellular signaling, resulting in enhanced chemical defense during periods of climate stress, while minimizing costs to growth. This perspective represents a major shift in our thinking away from direct effects of isoprene, for example, by changing membrane properties or quenching ROS, to indirect effects, through changes in gene expression and protein abundances. Recognition of isoprene’s role in the growth-defense tradeoff provides new perspectives on evolution of the trait, its contribution to plant adaptation and resilience, and the ecological niches in which it is most effective. 
    more » « less